Existence/uniqueness of solutions to Heat equation in extended Colombeau algebra

نویسندگان

  • Fariba Fattahi Department of Mathematics, University of Mazandaran, Babolsar, Iran.
چکیده مقاله:

This work concerns the study of existence and uniqueness to heat equation with fractional Laplacian dierentiation in extended Colombeau algebra.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

existence/uniqueness of solutions to heat equation in extended colombeau algebra

this work concerns the study of existence and uniqueness to heat equation with fractional laplacian di erentiation in extended colombeau algebra.

متن کامل

Existence and uniqueness of solution of Schrodinger equation in extended Colombeau algebra

In this paper, we establish the existence and uniqueness result of the linear Schrodinger equation with Marchaud fractional derivative in Colombeau generalized algebra. The purpose of introducing Marchaud fractional derivative is regularizing it in Colombeau sense.

متن کامل

existence and uniqueness of solution of schrodinger equation in extended colombeau algebra

in this paper, we establish the existence and uniqueness result of the linear schrodinger equation with marchaud fractional derivative in colombeau generalized algebra. the purpose of introducing marchaud fractional derivative is regularizing it in colombeau sense.

متن کامل

Regularized fractional derivatives in Colombeau algebra

The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of  Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...

متن کامل

Hecke Algebra Solutions to the Reflection Equation

We construct solutions to Sklyanin's reeection equation in the case in which the bulk Yang-Baxter solution is of Hecke algebra type. Each solution constitutes an extension of the Hecke algebra together with a spectral parameter dependent boundary operator, K(). We solve for the deening relations of the extension, and for the spectral parameter dependence of the boundary operator. Finding concre...

متن کامل

regularized fractional derivatives in colombeau algebra

the present study aims at indicating the existence and uniqueness result of system in extended colombeaualgebra. the caputo fractional derivative is used for solving the system of odes. in addition, rieszfractional derivative of colombeau generalized algebra is considered. the purpose of introducing rieszfractional derivative is regularizing it in colombeau sense. we also give a solution to a n...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 01  شماره 1

صفحات  21- 28

تاریخ انتشار 2014-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023